Neural Circuit for Locust Flight
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Camhi (Sci Am, 1971)



http://www.youtube.com/watch?v=88SulH7Qvdo
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Wilson DM (Sci Am, 1968)



Locust in a wind tunnel

Weis-Fogh T (Sci Am, 1956)



Locust on a merry-go-round

Weis-Fogh T (Sci Am, 1956)
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TOP VIEW OF LOCUST shows its wings in outline. The forewings are stiff throughout,
and their shape is completely under the insect’s control. The hindwings are stiff in their
forward part, but their rear halves are flexible and their shape is molded by the air stream.

Weis-Fogh T (Sci Am, 1956)
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EMG recordings during free flight!

Free flight
50ms

Fig. 4. Transmission of muscle potentials (M129) during two sequences of free flight from

Fig. 2. Photograph of head and prothoracic shield of Schistocerca gregaria showing part of i .
the transmitter—modulator circuit. For identification of components, see Fig. 1A. Scale bar, two dlﬂ_'cl'ent tf:n]'ﬂ].f: SC;”-.“‘DCB?'EH g}'ega;-ja‘

2mm.

Kutsch et al. (J Exp Biol, 1993)



left wing depressor EMG
bl o g bt W 4 1T O Y Y wdi bl
e A T _J~|,» i

\ i A
‘ IR |

: 5mV

right wing depressor EMG ’ | ’ ‘ ‘ l’ l J’ Jl J ‘J 1| Jl l‘ L ‘

R e (v 1 S W\ (L) S RSN ,J | Jl- Js '5 ‘ TR EAPRIR .J ] .,‘ WVE AR AR

LRSS S tl'ljl'['i'l%")"i (1 rll)mt{' ’J‘Iﬂ'[\f‘ml{' {‘ ‘lx' ‘1 l'ﬂ'l

Fig. 7 Version 1 telemetry system mounted on a locust Schistocerca ‘
Z acceleration x: 1% I I l' | \ N
s i il ||l | I N B

— ‘ ) ' | l { |

200 ms ' i |

Fig. 10. Data obtained wirelessly from a loosely tethered locust flying in a wind
tunnel. The onset of 18-Hz wing beats is observed in the two wing EMG traces
(top) and acceleration trace (bottom).
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Simultaneous EMG during fictive flight

(A) Wing muscles
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Zarnack & Mohl (J Comp Physiol A, 1977)



Locust nervous system

Copyrbght@ 2006 Makoto Mizunami. All rights reserved.
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Intracellular recording during tethered flight
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Robertson & Pearson (J Comp Physiol A, 1982)



Intracellular recording without deafferentiation

Wolf & Pearson (J Neurosci Methods, 1987)



Motor neurons are rhythmically active during fictive flight
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Hedwig & Pearson (J Comp Physiol A, 1984)



Hindwing depressor MN leads forewing depressor MN
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504 activates the elevator motor neuron
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Robertson & Pearson (J Comp Neurol, 1983)



504 & 301
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Robertson & Pearson (J Neurophysiol, 1985)



206 responds to wind and activates 504
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Robertson & Pearson (J Neurophysiol, 1985)



301 and 501 shows rhythmic activity
during fictive flight
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301 & 501 both pass the “reset” test
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Robertson & Pearson (J Comp Neurol, 1983)



Interaction between 301 and 501
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Robertson & Pearson (J Neurophysiol, 1985)



Delayed excitation is partly
mediated by disinhibition
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And finally...
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Time to simulate the circuit on a computer!

Grimm & Sauer (Biol Cyber, 1995)



Activity of flight interneuron 301
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Rhythmic pattern is reproduced
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(1) Wing hinge stretch receptors

A Anatomy
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Wing hinge receptors activate
depressor motor neurons
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(2) Tegula

Burrows (1996)



(3) Campaniform sensilla
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How do locusts maintain a stable flight?




Multiple sensory organs for detecting deviation
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Ocelli can detect the horizon
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Wilson (J Comp Physiol, 1978)



The locust flight simulator

Cambhi (Sci Am, 1971)

Rowell & Reichert (/ Comp Physiol A, 1986)



Three deviation-detecting neurons (DDNSs)
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DDNs responds to compound eye input
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Reichert et al. (Nature, 1985)




DDN also responds to combination of roll and wind
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Reichert et al. (Nature, 1985)



Ocellar input modulates visual response
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Roll to the right -> darkening of the right ocellus

Reichert et al. (Nature, 1985)



Thoracic interneuron (TIN)

Mesothoracic ganglion



DDN output is not transmitted outside flight
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DDN -> TIN is phase dependent!
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The anatomy of TCG
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Bacon & Tyrer (J Comp Physiol A, 1978)



TCG receives inputs from wind-hair neurons
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Fig. 2. Drawing of the TCG in the brain. Inserr shows that
region of the brain depicted in the figure. The TCG is seen
from the dorsal side in relation to the afferent fibres from the
wind hairs. It has its cell body near the crotch of the brain
and major region of arborization in the deutocerebrum. Most
wind-hair afferent fibres enter the brain dorsally via the dorsal
tegumentary nerve (DTN) and arborize only in two descrete
regions of neuropil (shown stippled) before entering the circum-
ocsophageal connective. These wind-hair output arborizations
occur within the dendritic extent of the TCG
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Bacon & Mohl (J Comp Physiol A, 1978)



Synaptic connection between
wind-hair neurons and TCG
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Bacon & Mohl (J Comp Physiol A, 1978)



TCG projects to thoracic ganglia

Bacon & Tyrer (J Comp Physiol A, 1978)



Recording from TCG using hook electrodes

Bacon & Tyrer (J Comp Physiol A, 1978)



Response of TCG to wind and light
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Fig. 6. a Responses of the TCG neurone to wind on the head. Upper trace; voltage change as the solenoid operated wind valve
was opened and closed. Lower trace; extrace]lular recorded response from the TCG. Attenuated potentials from the other TCG neurone
are also apparent on this trace. b Response to movement of an individual bair by displacing it with a pipette electrode recording
from the hair. Upper trace; primary sensory response. Lower trace; response of the TCG. ¢ Response to switching the microscope
lamp on and off. Upper trace; voltage change as the lamp was switched on and off. Lower trace; response of the TCG neurone.
The long response latency in this record is due to the slow time course of warming and cooling the lamp filament

Bacon & Tyrer (J Comp Physiol A, 1978)



